3.7.15 \(\int \frac {1}{x^3 \sqrt [3]{1-x^3} (1+x^3)} \, dx\) [615]

Optimal. Leaf size=105 \[ -\frac {\left (1-x^3\right )^{2/3}}{2 x^2}+\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+x^3\right )}{6 \sqrt [3]{2}}-\frac {\log \left (-\sqrt [3]{2} x-\sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}} \]

[Out]

-1/2*(-x^3+1)^(2/3)/x^2+1/12*ln(x^3+1)*2^(2/3)-1/4*ln(-2^(1/3)*x-(-x^3+1)^(1/3))*2^(2/3)+1/6*arctan(1/3*(1-2*2
^(1/3)*x/(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {491, 12, 384} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt [3]{2} \sqrt {3}}+\frac {\log \left (x^3+1\right )}{6 \sqrt [3]{2}}-\frac {\log \left (-\sqrt [3]{1-x^3}-\sqrt [3]{2} x\right )}{2 \sqrt [3]{2}}-\frac {\left (1-x^3\right )^{2/3}}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(1 - x^3)^(1/3)*(1 + x^3)),x]

[Out]

-1/2*(1 - x^3)^(2/3)/x^2 + ArcTan[(1 - (2*2^(1/3)*x)/(1 - x^3)^(1/3))/Sqrt[3]]/(2^(1/3)*Sqrt[3]) + Log[1 + x^3
]/(6*2^(1/3)) - Log[-(2^(1/3)*x) - (1 - x^3)^(1/3)]/(2*2^(1/3))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 384

Int[1/(((a_) + (b_.)*(x_)^3)^(1/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/c, 3]}, Simp[
ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*c*q), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*c*q
), x] + Simp[Log[c + d*x^3]/(6*c*q), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \sqrt [3]{1-x^3} \left (1+x^3\right )} \, dx &=\text {Subst}\left (\int \frac {1+x^3}{x^3 \left (1+2 x^3\right )} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )\\ &=-\frac {\left (1-x^3\right )^{2/3}}{2 x^2}-\text {Subst}\left (\int \frac {1}{1+2 x^3} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )\\ &=-\frac {\left (1-x^3\right )^{2/3}}{2 x^2}-\frac {1}{3} \text {Subst}\left (\int \frac {1}{1+\sqrt [3]{2} x} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )-\frac {1}{3} \text {Subst}\left (\int \frac {2-\sqrt [3]{2} x}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )\\ &=-\frac {\left (1-x^3\right )^{2/3}}{2 x^2}-\frac {\log \left (1+\frac {\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3 \sqrt [3]{2}}-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )+\frac {\text {Subst}\left (\int \frac {-\sqrt [3]{2}+2\ 2^{2/3} x}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{1-x^3}}\right )}{6 \sqrt [3]{2}}\\ &=-\frac {\left (1-x^3\right )^{2/3}}{2 x^2}+\frac {\log \left (1+\frac {2^{2/3} x^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{6 \sqrt [3]{2}}-\frac {\log \left (1+\frac {\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3 \sqrt [3]{2}}-\frac {\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{\sqrt [3]{2}}\\ &=-\frac {\left (1-x^3\right )^{2/3}}{2 x^2}+\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+\frac {2^{2/3} x^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{6 \sqrt [3]{2}}-\frac {\log \left (1+\frac {\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3 \sqrt [3]{2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 141, normalized size = 1.34 \begin {gather*} \frac {1}{12} \left (-\frac {6 \left (1-x^3\right )^{2/3}}{x^2}+2\ 2^{2/3} \sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{x-2^{2/3} \sqrt [3]{1-x^3}}\right )-2\ 2^{2/3} \log \left (2 x+2^{2/3} \sqrt [3]{1-x^3}\right )+2^{2/3} \log \left (-2 x^2+2^{2/3} x \sqrt [3]{1-x^3}-\sqrt [3]{2} \left (1-x^3\right )^{2/3}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(1 - x^3)^(1/3)*(1 + x^3)),x]

[Out]

((-6*(1 - x^3)^(2/3))/x^2 + 2*2^(2/3)*Sqrt[3]*ArcTan[(Sqrt[3]*x)/(x - 2^(2/3)*(1 - x^3)^(1/3))] - 2*2^(2/3)*Lo
g[2*x + 2^(2/3)*(1 - x^3)^(1/3)] + 2^(2/3)*Log[-2*x^2 + 2^(2/3)*x*(1 - x^3)^(1/3) - 2^(1/3)*(1 - x^3)^(2/3)])/
12

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 11.17, size = 931, normalized size = 8.87

method result size
risch \(\text {Expression too large to display}\) \(931\)
trager \(\text {Expression too large to display}\) \(1156\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(-x^3+1)^(1/3)/(x^3+1),x,method=_RETURNVERBOSE)

[Out]

1/2*(x^3-1)/x^2/(-x^3+1)^(1/3)+1/6*RootOf(_Z^3+4)*ln(-(3*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*
RootOf(_Z^3+4)^3*x^3+54*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4)^2*x^3-12*(-x^3+1
)^(2/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^2*x-5*RootOf(_Z^3+4)^2*(-x^3+1)^(1
/3)*x^2-6*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)*x^2+RootOf(_Z^3+4
)*x^3+18*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*x^3-2*x*(-x^3+1)^(2/3)-RootOf(_Z^3+4)-18*RootOf(
RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2))/(x+1)/(x^2-x+1))-1/6*ln(-(3*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf
(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^3*x^3-36*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4
)^2*x^3+12*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^2*x-RootOf(_Z^3+
4)^2*(-x^3+1)^(1/3)*x^2-30*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)*
x^2-3*RootOf(_Z^3+4)*x^3+36*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*x^3-10*x*(-x^3+1)^(2/3)+RootO
f(_Z^3+4)-12*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2))/(x+1)/(x^2-x+1))*RootOf(_Z^3+4)-ln(-(3*Root
Of(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^3*x^3-36*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_
Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4)^2*x^3+12*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*
RootOf(_Z^3+4)^2*x-RootOf(_Z^3+4)^2*(-x^3+1)^(1/3)*x^2-30*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_
Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)*x^2-3*RootOf(_Z^3+4)*x^3+36*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2
)*x^3-10*x*(-x^3+1)^(2/3)+RootOf(_Z^3+4)-12*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2))/(x+1)/(x^2-x
+1))*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-x^3+1)^(1/3)/(x^3+1),x, algorithm="maxima")

[Out]

integrate(1/((x^3 + 1)*(-x^3 + 1)^(1/3)*x^3), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 307 vs. \(2 (81) = 162\).
time = 5.92, size = 307, normalized size = 2.92 \begin {gather*} -\frac {2 \, \sqrt {6} 2^{\frac {1}{6}} \left (-1\right )^{\frac {1}{3}} x^{2} \arctan \left (\frac {2^{\frac {1}{6}} {\left (6 \, \sqrt {6} 2^{\frac {2}{3}} \left (-1\right )^{\frac {2}{3}} {\left (5 \, x^{7} + 4 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} - 12 \, \sqrt {6} \left (-1\right )^{\frac {1}{3}} {\left (19 \, x^{8} - 16 \, x^{5} + x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - \sqrt {6} 2^{\frac {1}{3}} {\left (71 \, x^{9} - 111 \, x^{6} + 33 \, x^{3} - 1\right )}\right )}}{6 \, {\left (109 \, x^{9} - 105 \, x^{6} + 3 \, x^{3} + 1\right )}}\right ) - 2 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} x^{2} \log \left (\frac {6 \cdot 2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} x^{2} - 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} + 1\right )} + 6 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}} x}{x^{3} + 1}\right ) + 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} x^{2} \log \left (-\frac {3 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (5 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} - 2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (19 \, x^{6} - 16 \, x^{3} + 1\right )} + 12 \, {\left (2 \, x^{5} - x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{6} + 2 \, x^{3} + 1}\right ) + 18 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}}}{36 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-x^3+1)^(1/3)/(x^3+1),x, algorithm="fricas")

[Out]

-1/36*(2*sqrt(6)*2^(1/6)*(-1)^(1/3)*x^2*arctan(1/6*2^(1/6)*(6*sqrt(6)*2^(2/3)*(-1)^(2/3)*(5*x^7 + 4*x^4 - x)*(
-x^3 + 1)^(2/3) - 12*sqrt(6)*(-1)^(1/3)*(19*x^8 - 16*x^5 + x^2)*(-x^3 + 1)^(1/3) - sqrt(6)*2^(1/3)*(71*x^9 - 1
11*x^6 + 33*x^3 - 1))/(109*x^9 - 105*x^6 + 3*x^3 + 1)) - 2*2^(2/3)*(-1)^(1/3)*x^2*log((6*2^(1/3)*(-1)^(2/3)*(-
x^3 + 1)^(1/3)*x^2 - 2^(2/3)*(-1)^(1/3)*(x^3 + 1) + 6*(-x^3 + 1)^(2/3)*x)/(x^3 + 1)) + 2^(2/3)*(-1)^(1/3)*x^2*
log(-(3*2^(2/3)*(-1)^(1/3)*(5*x^4 - x)*(-x^3 + 1)^(2/3) - 2^(1/3)*(-1)^(2/3)*(19*x^6 - 16*x^3 + 1) + 12*(2*x^5
 - x^2)*(-x^3 + 1)^(1/3))/(x^6 + 2*x^3 + 1)) + 18*(-x^3 + 1)^(2/3))/x^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \sqrt [3]{- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(-x**3+1)**(1/3)/(x**3+1),x)

[Out]

Integral(1/(x**3*(-(x - 1)*(x**2 + x + 1))**(1/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-x^3+1)^(1/3)/(x^3+1),x, algorithm="giac")

[Out]

integrate(1/((x^3 + 1)*(-x^3 + 1)^(1/3)*x^3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x^3\,{\left (1-x^3\right )}^{1/3}\,\left (x^3+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(1 - x^3)^(1/3)*(x^3 + 1)),x)

[Out]

int(1/(x^3*(1 - x^3)^(1/3)*(x^3 + 1)), x)

________________________________________________________________________________________